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Noise-induced stabilization of one-dimensional discontinuous maps
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Dynamical noise yields a stabilization, or switching inertia, of the flip-flop process in the Lorenz flow
[R. Wackerbauer, Phys. Rev. ¥, 4745 (1995]. In order to understand the corresponding stabilization
mechanisms in general, a systematic analysis of the influence of dynamical perturbations on the switching
process of one-dimensional, discontinuous magsiecewise linear map, a Lorenz map, and a piecewise linear
Lorenz approximationis presented. It turns out that the dominant stabilization mechanism in all Lorenz-type
maps under study is caused by a noise-induced unstable fixed point, resulting in a noise-induced escape of a
typical trajectory into a less frequently visited part of the attradt®1.063-651X%98)03909-9

PACS numbdis): 05.45:+b, 05.40+j

[. INTRODUCTION controlled switching dynamicper se
The dynamics of the Lorenz attractor is characterized by
The presence of small perturbations and noise, which i§vo unstable fixed points in addition to the saddle point at
ubiquitous in real systems, has been the subject of variou&l€ 0rigin[8,12]. A few specific features that might contrib-
and extensive studies in nonlinear dynamical systems. IH!€ 0 noise-induced stabilization characterize the antisym-
general, the effects of perturbations can be quite difficult tgnetric Lorenz attractor. These features are increasing dis-

predict and often yield counterintuitive behavior. Even low-12Nces Of successive states on any Poincggetion, a

) : o : i iscontinuity with infinite slope that corresponds to the ho-
dimensional systems exhibit a huge variety of noise drlver%OCIiniC orbit of the origin, and a lamingintermittentlike

phenomena, ranging frqm a less ordered to a more order% havior near the unstable fixed points. The effect of these
system dynamics. Prominent examples are the phenomena ?

o C i ical noise is di I
noise-induced chaofl 2], noise-induced ordef3]. or sto- operties due to dynamical noise is discussed subsequently

hasti h he signal . io of with three different one-dimensional discontinuous maps on
chastic resonandgl,5], where the signal-to-noise ratio of @ g interval: the piecewise linear mégq. (4)], the Lorenz
periodically modulated, usually bistable system can be aMmap [Eq. (5)], and a piecewise linear map exhibiting the

plified by the addition of external noise. Furthermore, thesame antisymmetric property as the Lorenz rfag. (6)]. It
presence of noise can alter the orbital stability in chaotiqurns out that the switching dynamics of all Lorenz-type
maps such that noise-induced synchronization is posiile maps under study is significantly reduced by dynamical
In nonhyperbolic dynamical systems, near homoclinic tannoise. This reduction is mainly caused by a noise-induced
gencies, noise can be amplified by the interaction with theescape of a typical trajectory into a less frequently visited
deterministic dynamics, leading to remarkable deformationgart of the attractor.
of the attractof7].

Even in hyperbolic systems, e.g., not necessarily nonhy- Il. NOISY DISCONTINUOUS MAPS

perbolic systems, such as the Lorenz system, which is not The influence of dynamical perturbations on a one-

structurally stable but hyperbolic, noise can alter the dynamiy; ansional mafF on the intervall eR is described by a
cal behavior. In the flip-flop process, associated with thq_angevin-type equation

switching on the two symmetric lobes of the Lorenz attractor
[8,9] (6=10,b=%, andr=28), dynamical noise can stabi- [—=1.X—=>Xi+1=F(x;)) +D§, (1)

lize the switching dynamics such that the number of Succesv'vheregi defines some perturbation event with amplitiie

sive rotations of a typical trajectory on the same lobe is sig-.l.0 account for the flip-flop process in the Lorenz system,

nificantly increased for small noise levdl$0]. This noise- discontinuous maps are considered. Analogously to the
induced stabilization is present not only for a specificy s mers problem of stochastic motion in a double well po-
amplitude-depending white noise, discussefilidl, but also  (enyia| [13], the average time a trajectory spends on one
for uniform and Gaussian white nois&1]. _ __branch of the attractor is called tmeean passage time. T
The present paper shows a detailed analysis of the influrnroughout this paper the distance of successive states
ence of dynamical noise on switching processes in oneex; ., —x;) is called state spacing For all mapsF under
dimensional, discontinuous maps. On the one hand, the instudy it is assumed th&(x) —x=b at the left boundary of
tention is to understand the phenomenon of noise-induceghe intervall, which guarantees the same minimum state
stabilization in the Lorenz system, which is why different spacingb.
aspects of the Lorenz system are discussed in terms of one- The existence of the stabilization effect in Lorenz’s sys-
dimensional maps. On the other hand, different stabilizationem does not depend on the specific type of nisd. For
mechanisms are found which are of interest in noisethe following analysis it is appropriate to consider random as
well as regular dynamical perturbatioi3¢; in Eq. (1).
(Throughout this paper, perturbations are called noise only if
*Electronic address: wacker@mpipks-dresden.mpg.de they stem from a stochastic procesAs random perturba-
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tions uniform noise£ "™ and dichotomous Markov noise Vvanishes for linearcontinuou$ maps and is positive for
gMarkov are considered. Uniform noise is defined as whiteStrong concavécontinuou$ maps if the interval is large
s-correlated noise with zero meaté(&; )= 5, /), whereg; enough such thgt the plyrya_tmics is not influenced_by boundgry
is uniformly distributed in the intervag; e[ —1,1]. For di-  COrrections or discontinuities. This seems to be in contradic-
chotomous Markov noise; is uniformly distributed in the tion to a stabilization property and directs focus on the inter-
set& e{—1,1. Both types of noise are&an be experimen-  &ction of perturbations with discontinuities. Notice that the
tally realized. From an analytical point of view, in contrast to 2P0ve arguments still hold it — and —+ in Eq. (2) are
uniform noise, dichotomous Markov noise guarantees a fixefePlaced by++ and ——.

relation of state spacing and perturbati§rat any statex; ,

which simplifies the analysis. Because of that, this paper Symbolic dynamics and entropy

deals mainly with dichotomous Markov noise. All realiza- e switching dynamicgflip-flop process of a discon-
tions of noise sequences consist of subsequE?f:_els with equ@l,ous map under study is described as a symbolic dynami-
sign. The lengthl of such a subsequencé;ji-x = With | system. Thereby the state spads partitioned with re-
perturbations of equal sign is defined as teegth of con-  gpect to the discontinuity at=d into two cells, which are
stant perturbationsLCP). In addition to random perturba- yepresented by the symbols 0 and 1. Then a typical trajectory
tlpns,regular perturbationst” of periodg, p.=2|, are con- - ry1* - can be mapped to a symbol sequerge(s;} ,,
sidered. A sequence of regular perturbations of pewod g ch that a symbol 0 (1) is assignedsidf a statex; is on

=2 is{}j=+—+—+—. The following analysis deals ¢ |eft (right) side of the discontinuitys;=0 for x;<d and

mainly with global dynamical noise, which means that thesi=1 for x,>d). The corresponding symbolic dynamical
state of a dynamical system is homogeneously, e.g., in each

iteration step, perturbed by a stochastic process. Additionajj:/Sten{M] IS deﬁneq aSe— 3k, andS—mF_(S)—S suc’h
stabilization can be achieved if a dynamical perturbation act "i‘t any symbol in the sequencB fulfills s;.;=s

only locally in state spack which can appear as more real- =0¢(s)). ¢ is the space of all admissible symbol se-
istic in certain cases. This is discussed briefly below. Th&uences, e.g., sequences that are induced by the dynamical
distinction between different dynamical perturbationssSystem for all initial stateg, on the attractor. The operator
(guniform - gMarkov 20 glohal, and localis mainly made to o is calledshift operator o3¢ and describes the dynamics
probe specific stabilization mechanisms. However, as a corgenerated byF in the space of symbol sequences. For
sequence of these investigations, dynamical perturbations @ractical purposes the length of a symbol sequence, de-
biased noise can be designed in order to enlarge or redudged by Sz{si}iL:’Ol, is regarded as finite. A woré; , of

the stabilizat'ion propertigs. . . ' length n, A e {SkSr1- -Sein_1lk=0,1,...L—n}, rep-

A further important point is the appropriate choice of theresents the set of sequendsjectorie$ that coincide in the
boundary correction ih as a consequence that a dynamicalfirst n successive symbols. The set of admissible wdtgls
perturbation can throw the trajectory out of this interval. To Pn:{Aj,n}JN=1! consists of all words of length that appear
obtain a perturbed map on the intervalthe perturbatio;  in the sequencs; it is called n-cylinder-induced partition
is set to zero whenever it would lead to a state that is not irp,_

I. Of course, this correction changes the statistics of noise, |n this paper the complexity of the symbol sequences on a

but it guarantees that the correction does not support an efinjte time scalen is quantified by theblock) entropyK (n)
largement of the mean passage time and therefore not thgs).

existence of a stabilization phenomenon, which is consistent

with the goal of this paperUsually, boundary corrections N

are chosen such that the next random noise event in the noise - Z pjlogp;

sequence is used for which the trajectory remairis im the K(n)= ot , (3
case of dichotomous Markov noise this would mean to re- n

placeé; by — & at the boundary. This is a larger correction in ) . i
comparison to the replacemefjt=0.) Nevertheless, the ef- Wherep; is the probability that a given word; , of lengthn
fect of this boundary correction can be estimat@kc. 2aPpears in the symbol sequenSeand log represents the
IVA). binary Ioganthm. . '

To compare perturbed and unperturbed states of a dy- !N the following analysis, binary sequences of length
namical system on average for 1 andt=2 time steps, the =10° and words of lengtm=4 are considerech=4 is of
following quantities are definedE®=F(x;), F==F(x) the order of the typical time scalg(D=0) of the switching
+D, FO=F(F%, and F**=F(F*)¥D. In the trivial  Processes.
case, e.g., for=1 time steps, the noisy system behaves like
the noiseless one becaudé™t:=(F*+F~)/2—F%=0 for lll. OBVIOUS EFFECT:
any mapF. However, fort=2 time steps, where the additive STABILIZATION BY LOCAL NOISE
noise term interacts with the dynamical systBmthe noisy
dynamics is somehow faster théequal t9 the noise-free

dynamics for concavéinean maps. In this case, the corre- ~ The piecewise linear majq. (4)] is characterized by a
sponding quantity linear increase of the state spacing and a discontinuity with

fixed threshold ak=d:

The piecewise linear map

H=2:=(F* +F ")2—F% 2) F: [0,1]—[0,1],x;~X;;1=(ax+b)mod,. (4
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FIG. 1. Mean passage tinfefor the piecewise linear majeq. FIG. 2. Mean passage tinTeversus noise levdD for the piece-

(4), with a=1.05 andb=0.05] versus the noise levé): uniform wise linear map ¢=1.05,b=0.01, andb=0.001): local noise on
noise(*), dichotomous Markov noise< ), and regular perturba- [0.2,0.§ (dot-dashed ling the corresponding approximation by
tions with periodp=2 (A). T(D=0)+in,—i, (see the text, dashed lineand global noisgfull

line). The dotted lines correspond to the noise-free mean passage
time T(D=0)=34.4 for b=0.01 and T(D=0)=79.3 for b

With the chosen parameters af=1.05 andb=0.05 the —0.001.

minimum state spacing i5(0)=0.05.

Figure 1 shows the influence of dynamical perturbationsstatesx; . , wherei, is the minimum number of iterations
on the switching behavior: The mean passage flitenean  fulfilling X;.+i,<0.8+D. Thus, as a rough approximation, a
all considered perturbations and reflects that noise-inducegler passage, wherelty*~2=0 within the interval. This rea-
stabilization does not exist for this linear discontinuous mapson for stabilization is confirmed in Fig. 2 by comparing the
T is larger for uniform noise than for dichotomous Markov graph of T(D=0)+iy,—i, with the graph for local noise.
noise becausé| &M "My =(|¢Mak|y/2, whereas the be- ~ Thus local noise in state space can clearly support the
havior of dichotomous Markov nois¢M2™®® and regular stabilization effect if the state spacing is not constant, even in
dynamical perturbatioré?=2 is very similar. As already cases where there is no stabilization for global noise. One
pointed out, the linearity of far from the discontinuity ~consequence, from an analytical point of view, is that any
leads toH!=2=0 [Eq. (2)] and therefore does not explain the stabilizing effect of dynam_lcal noise on speC|f|9 Io<_:a| fea-
decrease of. However, a discussion ¢1'=2 near the dis- tures of maps cannot be investigated by considering local
continuity [16] shows that the discontinuity at=d leads to  N0ise since local noise superimposes an additional stabiliza-

a decrcase ol as soon a©~1-d on the uni nenval, |20 NSNS, 0 e 0y S ees e
where 1-d is the maximum state spacing Bfon|. For the Y i

considered parameteas- 1.05 andb = 0.05 the discontinuity induced stabilization in the Lorenz map, is avoided within
' R thi . Furth , this t f noi b ded
appears atl=0.905 and the decrease ofis expected for IS Paper. PUTINermore, fis ype of Noise can be regardec as

A X 5 realistic or interesting to consider also from an experimental
D>0.095. This is in good agreement with Fig. 1 becalise ngint of view, when different subprocesses of a dynamical
shows a more steep decline with increasihgn the neigh-  system are perturbed by noise with different strength.
borhood of this critical noise levdD . =0.095. The small

decrease of with D, already for 0.05:D<D¢, reflects the IV. FORMATION OF NOISE-INDUCED

influence of the boundary correctionat 0, where the state UNSTABLE FIXED POINTS

spacing takes its minimum value of 0.05.

In contrast to global dynamical noise, local dynamical
noise can lead to a considerable switching inefgialarge-  Studying geometric models of the Lorenz flow by one-
ment of T) even for linear maps. This is demonstrated in Fig.dimensional maps of an interval onto itself has led to a re-
2, where the dependence of the mean passageTiorethe markable u_nderstand.lng of the Lore_nz system, for example,
noise levelD is plotted fora=1.05 and different minimum the bifurcation behavior at homoclinic explosions, at pretur-
state spacingd=0.01 (0.001). In the case where noise isPuleénce, or at the Hopf bifurcatiori2,17. The interaction
added in each iteration step, one gets a reduction of switchQ:: dﬁ' na[nlcal perturbatloni %thbt_hg detedrm|_n|25é|c .dy(rjl.amlcs
ing with increasingD as discussed above. In contrast, if 8ustsee: d t?rer%a%tg?)?t?r:ed;orre’s gnsc,iinan L(;r_enz)(nhl'—Z@ ',3
noise is added locally, for example, on the subinterval[12 17 y P 9
[0.2,0.9, the mean passage tiriieis clearly increasing with '

A. The Lorenz map

D. This is caused by the asymmetry of the state spacing on F-11—-[-1,1],

the left and right boundaries of this subinterval together with

the fact that noise can throw a trajectory out of the subinter- 1-8Ixl%,  xe[-10

val, but not back into it. Assuming a negative noise event at XX 4 1= 0, X =0 (5)

the left boundaryx=0.2, the corresponding trajectory per-
forms a loop in such a way that;=0.2—-D and Xisi

=0.2, wherei,, is the minimum number of iterations fulfil- and the corresponding standard parametetsl/g+0.001
ing this condition. For a state=0.8, a positive noise event and g=1.95. The minimum state spacing pf=1 is 1
lets the trajectory jump t&; =0.8+D by jumping over the —F(1)=0.05.

—1+8Ix[%  xe(0,1]
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FIG. 3. Lorenz magfull line), a linear approximatioridotted FIG. 5. EntropyK(n=4) versus maximum length of constant
line), and the noisy Lorenz maf(=0.2, dashed line perturbations! ., for dynamical perturbations with amplitude

=0.2: dichotomous Markov noisgull line) and regular perturba-

The analysis of the noisy Lorenz map and Lorenz—typetions =2l nax (dashed ling The dotted line corresponds ©
maps focuses on the block entropy, which appears as a more™"
promising quantity than the mean passage timalone, for  namjcal perturbationg” =2, no stabilization is present. The
the understanding of the stabilization mechanisms. As Se€gynamics is characterized by a small increase in the entropy
in Fig. 4(@), the entropyK decreases with increasing noise i and a decrease in the mean passage Timith noise level
level D for random dynamical perturbatiorigniform noise  p  ajthough the dynamical states are perturbed by the same
and dichotomous Markov noigereflecting a more inhomo- amplitude of “noise” D. For large noise amplitudes, near
geneous distribution of words in the corresponding symbob>o_4’ the random process dominates the switching dynam-
sequences in the perturbed case. A more detailed investigasg and, correspondingly, the frequency of constant words
tion of the distribution of words shows that the probability of ¢i5tg shrinking, which is reflected in Figga#and 4b).
f'”fj'ng a copstan} word in the symbol sequence is  one important difference between dichotomous Markov
p('0000)+p('1111)=0.29 (0.35) for dichotomous Mar- ngise and regular perturbations is the maximum LGP, .
kov noise with amplitud® =0.1 (0.2), in comparisonto the £q; the considered regular perturbation itljs,.=¢/2=1,

noise-free case, wherp('0000)+p('1111)=0.23. This \yhereas for the considered realization of dichotomous Mar-
reflects that constant words are more frequent in the noisy,,, noise it is| nax=15. The average LCP fogMarkov ig

symbol sequence and that a noisy trajectory stays longer o<rr>:2_0, in comparison to the mean passage B = 0)
Fhe same bra_nph _of the attractor. This effect is ca_tlled nc_)ise—: 2.4. A more detailed analys{g6] shows that the noise-
induced stabilizatior{10] and is also expressed in an in- jhqyced entropy reduction, e.g., the stabilization property,
crease of the mean passage tifieof 8% (20%) forD  yecreases if the maximum LCP is successively reduced in
=0.1(0.2) in Fig. 4b). In contrast to that, for regular dy- e nojse sequende,,=15,10,8. . .,1.This is represented

in Fig. 5 for a specific noise amplitud2=0.2.

The noise-induced switching inertia is also reflected in the
probability distribution of the states of a typical trajectory
that is plotted in Fig. @) for the noise-free case as well as
for dichotomous Markov noise and regular perturbations
£=2 with noise amplitudeD=0.2. A noiseless trajectory

0.90F ] (D=0) is more frequently near the discontinuky=0 than
I ] nearx;= 1. This remains true for the regular dynamical per-
[ ) ] turbationp = 2. However, for dichotomous Markov noise the
0.85 . . . . . . .
00 01 02 03 04 05 probability of a trajectory neaf; =0 is reduced, whereas the
D probability of statesx;>0.6 is clearly increased. Both fea-

tures express the stabilization property that might be caused
by two different effects, discussed belojBecause of the
antisymmetryF (—x)=—F(x) of the map, only switching
from the left to the right branch is discussed throughout this
paper, without losing universality.
In the first mechanism noise changes the distribution of
switching states. Thereby, a stateis called switching state
if it switches in the next time stept+1 from the left to the
. ‘ . ‘ right branch. It is defined by;_;<<0 andx;>0. From the
00 01 6z 03 04 05 dynamical behavior of the Lorenz map in Fig. 3 it follows
that if an orbit comes close to the discontinuity {60, the
FIG. 4. (a) EntropyK(n=4) and(b) mean passage timever-  following state(switching statgis close to the end poink;
sus noise leveD for the Lorenz map: uniform noisg), dichoto- =1 and the number of iterations on the right branch is maxi-
mous Markov noise ¢ ), and regular perturbations with peripd  mal. Thus, if noise changes the distribution of switching
=2 (7). states such that states closexte=1 are more frequent, the
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0.18 maximum LCP,| .= #/2, is plotted in Fig. 5 forD=0.2.
o(x) [T Stabilization is present as soon @& is of the order of the
N — | typl_cal time ;calé’(D:O) of the SW|_tch|ng process. In com-
______ parison to dichotomous Markov noise the stabilization effect
is more marked foft,,,,>6 in the case of regular perturba-
.06k N tion because perturbations with-6 are more frequent in
' R periodic sequences than in realizations of random noise.
a) oLl The effect of the boundary correction on the mean pas-
0.00 . . . SN sage timeT can be estimated by comparing the value§ pf

00 0z 04 06 08 1.0 calculated with and without boundary correction. For di-
Xi chotomous Markov noise and no boundary correction near
0.100 : : : : the noise-induced fixed point§,increases continuously with
s the noise amplitud®. Without (with) boundary correction
00751 R | one finds an increase df=40% (20%) forD=0.2 andT
IRENN =110% (20%) forD=0.4 in comparison to the noise-free
p(xi) RN . .
3 case. For regular perturbationg€2), T remains constant
0.050 F DN . ! i .
EN without boundary correction, independent of the noise level
N D.
0.0251 Mo ] This identified stabilization mechanism in the discrete-
0) time system can be transferred directly to the continuous-
O T T 0 e time Lorenz system, where stabilization was reported earlier

[10,11). There the first component of the Lorenz system was
perturbed by different types of noise, steadily after some
stroboscopic time. Although the comparison can be only
qualitatively, it is obvious that also in the continuous case,
noise can induce or better shift the two symmetric unstable
fixed points such that a typical trajectory is able to come
closer to(escape into the direction )athe noise-free unstable
fixed points. The decrease in the entropy value is about the
same for the time-continuous and the time-discrete system.

Switching states x;

FIG. 6. Probability distribution of(a) all states andb) the
switching statesD=0 (full line), dichotomous Markov noisel(
=0.2, dotted ling and regular perturbatiods =2 (D=0.2, dashed
line).

mean passage time might be increased. In Filg) the dis-
tributions of switching states for the noise-free orbit and for
perturbed orbits(regular and random perturbation§)
=0.2) are compared with each other. All graphs coincide
approximately, except fax;>0.8, where an increased prob- A linear approximation of the Lorenz map in E) by
ability in both perturbed cases shows that a dynamical periwo linear functions per branch is defined as piecewise linear
turbation can throw the trajectory out from the intervalA Lorenz map

combination of the two facts thafi) the probability of

B. The piecewise linear Lorenz map

switching states withx;>0.6 is the same for both perturbed Foo [-11-[-11],

casedFig. 6(b)] and(ii) the stabilization effect vanishes for

regular dynamical perturbations, indicates that this first argu- f1(xi), xie[—1,0

ment is not the dominating one for explaining noise-induced XX 1=1 0, x;=0 6)

stabilization in the Lorenz map.
In the second mechanism noise induces an unstable fixed

fa(x)=—"f1(=X),
po!nt. ﬁs a consequenc.:e of the no!se—lnduced.unstable flxev(\j/ith £,(07)=1 andf(x)=ax+b for —1=x<x<0 and
point x of F+D, which exists inl for noise levels

. ! ; X a>1. The parameteb is fixed asb=a—0.95 in order to
D>0.05 (Fig. 3), the existence of an attractive regioh 56 the same minimum state spacing as in the Lorenz map

=[x,1]CI of the mapF +D is generated. Here, the LCP is f,(—1)+1=0.05. This map can be regarded as a generali-
explicitely taken into account, since far. <x;<0~, where  zation of the Lorenz map, since it exhibits the same symme-
F(x.)+D=X, a noise subsequende&,}=++(+---) di- try, but allows us to vary the length of the laminar phasg (
rects the orbit into the attractive regiof. There the direc- and the corresponding sloge A further advantage is that
tion of iteration is reversed for positive noise evegts 0 in  critical noise levels for different stabilization mechanisms
comparison to the noise-free case, which is a necessary copan be derived analytically. Although this map exhibits a
dition for the escape of a trajectory. Notice the similarity of rich variety of dynamical behavior for different parameters,
the noisy mapF+D to the Lorenz map in the parameter it is discussed in close connection to the Lorenz map in the
regime near and at the existence of preturbuldi&el?. following. In particular, the linear approximation of the Lo-
Since mainly subsequences with constant perturbationsenz map in Fig. 3, consisting of two kinkat x,=—0.2,
are responsible for the stabilization phenomenon, one ex<,=—0.03), is discussed in detail by the piecewise linear
pects that driving forces with an increased frequency of suchorenz magd Eq. (6)] with only one kink per brancliocated
subsequences might further enlarge the stabilization. This igt ). This allows us to focus on the influence of dynamical
the case for colored noise, but especially for periodic perturnoise on both kinks separately and therefore to simulate dif-
bations. For this last case, the decrease of entropy with thierent aspects of the Lorenz map separat@gcause of the

xj e (0,1],
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D Switching states x;
3 ' ' ' ' FIG. 8. Probability distribution of the switching states for

=0 (full line), dichotomous Markov noiseD(=0.2, dotted ling,
and regular perturbation®=2 (D=0.2, dashed line

oL i
! branch are possiblgL6]. This is reflected in the probability
1F 1 distribution of words of lengtim=4 such that it is dominated
by words “0101” and “0110"” and the corresponding sym-
o b) metric ones. Correspondingly, the mean passage time is
0o o1 0 o3 o4 Tos small, T(D=0)=1.5, as is the entropy value.
D Dynamical perturbations lead to a redistribution of

FIG. 7. (a) EntropyK(n=4) and(b) mean passage tini& ver- switching states in the intervdl =[f,(x)— D,f1(x)+D]
sus noise levelD for the piecewise linear Lorenz mapx( € !1, Whereas fox;>f,(«x)+D the graphs nearly coincide
=-0.03): dichotomous Markov noiseX() and regular perturba- for both noisy and the noise-free cadésy. ). This redis-
tions with periodp=2 (A). tribution of switching states allows more iterations per pas-
_ _ _ _ ~ sage with increasing noise levl for somex; €1, since the
antisymmetric property of this map, again, only switching,,ner houndary of, increases. A more detailed discussion
from the left to the right branch is discussed, without Iosmgin [16] shows that this gain of states dominates the loss of

universality) states that is caused by a decrease of the lower boundary of

1. Approximation in the neighborhood Tl. For D>0, the corresponding probability distribution of
of the discontinuity: «c= rc, words is characterized by an increase of words of type 0110
and 0111, respectively, and, in parallel, a reduction of the

To study the effect of dynamical noise in the Lorenz map, st frequent words 0101. Thus the entropy as wellras
near the discontinuity, where the slope tends to infinity, the

; A increases slowly fob>0 (Fig. 7).
parameters in Eq() are cho_sen_ ag=x,=—0.03 and_a : The second mechanism is the existence of a noise-induced
=1.56, such that the piecewise linear Lorenz map coincide

. o - tnstable fixed point. For noise levels larger than the mini-
with the approximation of the Lorenz map in Fig. 3_119rri| mum state spacing)>0.05, the existence of an unstable
<|k|. In Fig. 7 noise-induced stabilization is quantified by ’

(a) the entropyK (n=4) and (b) the mean passage time  [1xe€d pointx, x=(b—D)/(a—1), of the mapf,+D on|
The entropy increases witD for D<0.26, whereas for Yields the existence of an attractive regiof=[x,1]CI.
larger noise levels, the entropy decreaféis. 7(a)]. The  Thus, as soon as a trajectory visifs positive perturbations
mean passage tiniE increases with the noise levBl near ~ can direct the trajectory to the end point. For small noise
D<0.16 for both dichotomous Markov noise and regularamplitudesD, the probability of a trajectory to visit, is
perturba‘[ions&:Z)_ For |arger amp||tude§) both graphs small since 1ﬂA={ } However, as soon as a critical noise
split, indicating a change in the underlying mechanism forlevel f,(x)+D>X is reached, e.gb>D andD 4=0.19
noise-induced switching inertid: still increases for dichoto- for the condsidered parameters, this probability is clearly in-
mous Markov noise, wheredsremains constant for regular creased becaudgN.A#{ }. Then a trajectory can escape
perturbations. Similarly to the Lorenz map, two stabilizationinto 1,, the less frequently visited subset of the attractor,
mechanisms can be identified, which are discussed below. already for frequent switching statess |, because,C A.

The first mechanism is a redistribution of switching states(In principle, this mechanism is the same as for the Lorenz
In the noise-free case the distribution of switching states isystem, except that the arguments are more quantitative and
characterized by a step at="f,(«), wheref,(x)=0.56 for  critical parameters can be calculated analytically.
the considered parametgfsig. 8). This step is caused by a  The effect of the second stabilization mechanism is dem-
comparatively large slope of the map fot| <«, and thisis  onstrated in the distribution of word®i€4) in Fig. 9. For
why the support of the attractor can be divided in one subseD =0.16, which is below the critical noise levBl ,=0.19,
l;=[—D—1f.(x),f1(x)+ D], which is visited often by the the distribution is dominated by words of type 0101 and on a
trajectory, and the complementary subkgtl—1,, which  minor part by words of type 0110. Ne&=0.22~D 4, a
is less frequently visited. For the noise-free case and transition to a rather homogeneous distribution takes place;
el,, only passages of one or two iterations perthe corresponding entropy takes its maximum value of about
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FIG. 9. Probability distribution of words of lengti=4 (a) below (D =0.16), (b) near ©=0.22), and(c) above D =0.28) the critical
noise levelD 4,=0.19. The words are represented by their normalized binary number representation.

K(n=4)=1 and remains constant. Above the critical noisebilization effect appears for smaller noise levels and is
level D>D 4 (D=0.26), constant words are dominant in present even for regular perturbations=2). ForD=0.1,
the distribution of words, yielding again a structured distri-the mean passage tink is enlarged by 23% for regular

bution and therefore a decrease in the entropy. perturbations =2), in comparison to 45% for dichoto-
Again, as a consequence of the second stabilizatiopggus Markov noise.
mechanism, regular perturbations with peripe-2l and | The first mechanism is a redistribution of switching states.

=1,2,4,6,8,10 enlarge the mean passage time by 10%, 14%py the noise-free case, the distribution of switching states in
60%, 83%, 123%, and 157%, in comparison to d|chotomou§ig_ 11 is characterized by a step >qt=f§(:<)=0.39. The

Markov noise, where the corresponding factor is 47% forI
D=0.3. It is further remarkable that both stabilization
mechanisms are visible in the entropy grdpig. 7(a)], but
they become obvious in thE graph only if different types of
perturbations are considergiig. 7(b)].

ess frequently visited subset of the attradtpr [ f2(«),1] is
determined by the second iteratefgfsince a trajectory with
X;= k stays on the left branch for two more time steps be-
cause:<<f;1(0*) andf%(;<)>0. As a consequence, the cor-

responding redistribution of switching states bp for D
>0 (Fig. 1) is governed by an effective noise level, which

2. Approximation in the neighborhood : . .
is larger than the true noise level. For dichotomous Markov

of the laminar phase:x= kK,

R R ; : T Markov _

The approximation of the Lorenz map near the IaminarnOIse the interval is g|v§n byl y _[_fl(fl(f) ;E)Z
phase is studied in two casds; k= —0.2, for which stabi- _D'Zfl(fl(K)MJ;EO)“Lg]' Wh'cluaﬁi” be rewritten agfl _
lization is clearly marked, andi) x=—0.5, which is more =[f1(«)— Dt ™", fi(k) +Derr '] and an effective noise
relevant for the Lorenz magFig. 3. In both casesd level D™ . For the piecewise linear Lorenz map, this
—1.05), the piecewise linear Lorenz map coincides with theeffective value is given b Y™ = (m+1)D, wherem is
approximation of the Lorenz map in Fig. 3 fpt|>|«|. In  the slope off; for x;>«, e.g.,DM3"*=6.5D for the con-

contrast to the preceding subsection, both kinks are locatesidered parameters. This amplified noise level fits well with
at k<f1(07). Thus their influence on the trajectory is ear- the distribution of switching states in Fig. 11. For regular
lier than the time step immediately before switching. Thisperturbations §=2), the corresponding intervaif=2 is
results in an amplificati_qn o_f the noise I_evel that i_s SL_Jperim-S"ghﬂy smaller because Tﬁ)=2=[f1(f1(K)—D)
Eoised on the two stabilization mechanisms and is dlscussegD,fl(fl(K)JrD)_D]_ This corresponds to an effective

elow. . . o . noise level ofDY?=(m—1)D, yielding D?;;>=4.5D for

. For the kink atk=—0.2, the piecewise linear malp is the considered epffjlrameters. In both cases?,ffdynamical pertur-
given by fy(x;)=1.05¢+0.1 for X<« and f4(xi) =5.5%  paiiong are amplified by the interaction with the dynamical

+1 for x;=«. The entropyK(n=4) decreases with the system and therefore stabilization is present even for regular
noise levelD (Fig. 10 and reflects the existence of a noise- o\ -iions

. S . e
driven stabilization. In contrast to the previous case, the stap The second mechanism is the existence of a noise-induced
unstable fixed point. This mechanism leads to additional sta-

1.0 ' ' ' bilization for dichotomous Markov noise as well as for regu-
lar perturbations with periodg>2T(D=0), whereby the
091 M time scale of the noise-free systemTigD =0)=4.3. How-
x| ever, the critical noise levdd ,=0.06 is considerably small
Kosr 7 than Sec. IV B 1, reflecting the strong amplification of noise.
The shape of the graphs in Fig. 10 are determined by two
0.7F . additional effect§16]. First, nearD>0.1, the entropy starts
growing with noise leveD for éMa%® as well as forg? =2:
0.6 ‘ . . . This is caused by the fact that staigs « exist such that the
0.0 01 6z 03 04 05 first iterate is a switching statl (x;) + D>0. This happens

D as soon a$,(«x)+D>0, e.g.,.D>0.11. The second remark
FIG. 10. EntropyK(n=4) versus noise leveD for the piece- concerns the decrease of the entropy \ivith n(.)is.e [Bvébr
wise linear Lorenz map«=—0.2): dichotomous Markov noise D>0.35, only for regular perturbatior® =2. This is caused
(¢) and regular perturbations with perigd=2 (A). by a rapid increase of words 0101 and reflects that the tra-
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FIG. 11. Probability distribution of the switching states for
=0 (full line) for dichotomous Markov noise(=0.05, dotted
line) and regular perturbation®=2 (D =0.05, dashed line

jectory can be captured near the discontinuity for this par

ticular type of regular perturbation, not discussed in mor
detail.
For the kink at«=—0.5, for the piecewise linear Lorenz

map with k= —0.5, the corresponding step in the distribu-

tion of switching states fob =0 is less marked in compari-
son tok=—0.2 because the slope fgr>« is reducedm

=2.85<5.5. Thus the redistribution of switching states by
dynamical noise with respect to the noise-free case is small
for k= —0.5. As a consequence, the stabilization property ist
nearly vanishing for regular perturbation as seen in Fig. 12.

The maximum stabilization is 8% fdd=0.06 and regular
perturbationsé” =2 and 21% forD=0.1 and dichotomous
Markov noise.

Otherwise, fork=—0.5, noise is amplified by two dy-
namical interactions becausé?(x)=—0.21 and f3(«)
=0.40. The corresponding amplification of, for example
positive noise events, is given by in+m?)D, e.g., 1D

for m=2.85, and is about two times larger than for the case e
x=—0.2. This strong amplification of noise causes a more,

steep increase of nearD=0 for k= —0.5 (Fig. 12 than it
is the case fok=—0.2. Furthermore, it yields also a small
critical noise levelD 4=0.05 for the onset of the second

stabilization mechanism that dominates the degree of stabi-

lization.
The specific choice of the kink at=—1 corresponds to
a single piecewise approximation of the Lorenz maplon

Although noise-induced stabilization still exists in this case,
it becomes significantly visible in the corresponding graphs

(K, T) only, after some proper techniques are applied.

3. Comparison with the Lorenz map

For the piecewise linear Lorenz map, in both cases (

—0.03 and«= —0.5) two mechanisms for noise-driven sta-

bilization are found:(i) noise-induced redistribution of the

NOISE-INDUCED STABILIZATION OF ONE . ..
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FIG. 12. Comparison of the mean passage timeersus noise
level D (dichotomous Markov noigefor different approximations

of the Lorenz map.__, Lorenz map; - - —, linear approximation
with two kinks (k,=—0.5k,=—0.03), and piecewise linear Lo-
renz map fork=—0.5(—) andk=—0.03 (-—-—). The vertical

ticks mark the corresponding critical noise levBlg and the dotted

Sine marksT(D =0) for the Lorenz map.

This approximation is defined by (x;) = 1.05¢; + 0.1 for x;
<-0.5, fi(x))=2.1x;+0.625 for —0.5=x;<—0.03, and
f1(07)=1 on the left branch ol and reproduces noise-
induced stabilization in the Lorenz mdpig. 12. The de-
endence of the mean passage tifmen the noise leveD

br the Lorenz map and its two-kink approximation is similar
o the behavior of the piecewise linear Lorenz map for
k=—0.03, but shifted to smaller noise levels. This shift re-
sults from a smaller critical noise levBl ,=0.09<0.19, cal-
culated analytically for the two-kink approximation from

f1(—0.03)+D 4=x. This critical value D 4=0.09 deter-

mines exactly the noise level where stabilization becomes
obvious for the Lorenz map, as seen in Fig. 12, supporting
‘the hypothesis that the second mechanism is the dominant

The time scale of the flip-flop processes is different in
th mapsT(D=0)=2.4 for the Lorenz map and its two-
kink approximation and (D =0)= 1.5 for the piecewise lin-
ear Lorenz map £= —0.03). For the Lorenz map, constant
words of lengthn=4 are already dominant fob =0, in
contrast to the piecewise linear Lorenz map, where switching
0101 dominates. Increasiry in the first case increases the
frequency of constant words for sméll. Thus entropy does
not increase witld (D smal) for the Lorenz map in Fig. 4,

in contrast to the piecewise linear Lorenz map in Fig. 7.

V. CONCLUSIONS

To understand noise-induced stabilizati@dlS) in the
Lorenz systeni10], the influence of dynamical perturbations
(uniform white noise, dichotomous Markov noise, and regu-
lar perturbations on the switching dynamics of one-

switching states, corresponding to an enlargement of the fredimensional discontinuous maps is discussed. For the piece-

quently visited part of the attractor, arid) noise-induced

wise linear system(modulo discontinuity a stabilization

unstable fixed point, corresponding to a possible escape of @nhancement of the mean passage Yiimeresent if noise is

trajectory to the endpoint$x;|=1. In addition, for k=
—0.5, an amplification of noised;>D) is superimposed

added locally in state space, which is in contrast to global
noise, where no stabilization is found. For the Lorenz map as

on these two processes, which leads to a shift of the stabiliwell as for piecewise linear approximations, exhibiting the
zation phenomenon to smaller noise levels as demonstrateshme antisymmetric property as the Lorenz map, stabiliza-

in Fig. 12 for k=—0.03 and«x=—0.5.

tion is present even for global noise, as it is the case in the

Additionally, Fig. 12 represents the stabilization effect for three-dimensional Lorenz flow. A detailed analysis shows

the Lorenz map and for its two-kink approximati@fig. 3).

that this stabilization is mostly caused by the existence of a



3044 RENATE WACKERBAUER PRE 58

noise-induced unstable fixed point, yielding a noise-inducedVitt, Neimann, and Kurth§19] and others in the context of
attractive region of the state space and resulting in an interstochastic resonance.
mittent escape of the trajectory into a less frequently visited The most prominent effect with respect to noise-driven
subset of the attractor. This stabilization can be clearly enswitching processes is stochastic resona(BB) [4]. Al-
hanced if regulatcolored perturbations with periods longer though its notion has a very broad meaning in the literature,
than two_times the typical time scale of the noiseless system is claimed that NIS under study is not a SR phenomenon,
are considered. either in the conventional meaning of signal amplificafiéh

The identified stabilization mechanisms with respect topr in generalized versions such as aperiodic stochastic reso-
one-dimensional maps can be transfered directly to the thregrance[20] or noise-free SR21,27, since all these realiza-
dimensional Lorenz flow to related switching processes injons of SR show a minimum in the mean passage time at a
other continuous dynamical systems, but of course also tgertain noise level. However, several properties found in the
other one-dimensional discontinuous maps. For examplq,oisy Lorenz systenfmap are related to findings in the tran-
consider Lorenz-type maps with smoothed kinks or corresjent dynamics of an overdamped particle in a noisy cubic
sponding maps with modulo discontinuity. However, a genpotential[23] or in a noisy bistable system operating in the
eralization of the phenomenon of NIS to one-dimensional trong forcing reg|mq24,za These properties are post-
discontinuous maps is not possible since in particular casgsoned switch events or enhancement of stabilization by col-
either stabilizing or destabilizinflL6] factors can dominate ored noise. This motivates a detailed comparative analysis of

the perturbed switching dynamics. both types of noisy switching processes.
From a methodical point of view, it is demonstrated by a

comparative analysis of the mean passage time and the block

entropy, based on a symbolic dynamical description of the ACKNOWLEDGMENTS
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