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Noise-induced stabilization of one-dimensional discontinuous maps

Renate Wackerbauer*
Max-Planck-Institute for Physics of Complex Systems, 01187 Dresden, Germany

~Received 17 February 1998; revised manuscript received 13 May 1998!

Dynamical noise yields a stabilization, or switching inertia, of the flip-flop process in the Lorenz flow
@R. Wackerbauer, Phys. Rev. E52, 4745 ~1995!#. In order to understand the corresponding stabilization
mechanisms in general, a systematic analysis of the influence of dynamical perturbations on the switching
process of one-dimensional, discontinuous maps~a piecewise linear map, a Lorenz map, and a piecewise linear
Lorenz approximation! is presented. It turns out that the dominant stabilization mechanism in all Lorenz-type
maps under study is caused by a noise-induced unstable fixed point, resulting in a noise-induced escape of a
typical trajectory into a less frequently visited part of the attractor.@S1063-651X~98!03909-9#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

The presence of small perturbations and noise, whic
ubiquitous in real systems, has been the subject of var
and extensive studies in nonlinear dynamical systems
general, the effects of perturbations can be quite difficul
predict and often yield counterintuitive behavior. Even lo
dimensional systems exhibit a huge variety of noise-driv
phenomena, ranging from a less ordered to a more ord
system dynamics. Prominent examples are the phenome
noise-induced chaos@1,2#, noise-induced order@3#, or sto-
chastic resonance@4,5#, where the signal-to-noise ratio of
periodically modulated, usually bistable system can be a
plified by the addition of external noise. Furthermore, t
presence of noise can alter the orbital stability in chao
maps such that noise-induced synchronization is possible@6#.
In nonhyperbolic dynamical systems, near homoclinic t
gencies, noise can be amplified by the interaction with
deterministic dynamics, leading to remarkable deformati
of the attractor@7#.

Even in hyperbolic systems, e.g., not necessarily non
perbolic systems, such as the Lorenz system, which is
structurally stable but hyperbolic, noise can alter the dyna
cal behavior. In the flip-flop process, associated with
switching on the two symmetric lobes of the Lorenz attrac
@8,9# (s510, b5 8

3 , andr 528), dynamical noise can stab
lize the switching dynamics such that the number of succ
sive rotations of a typical trajectory on the same lobe is s
nificantly increased for small noise levels@10#. This noise-
induced stabilization is present not only for a spec
amplitude-depending white noise, discussed in@10#, but also
for uniform and Gaussian white noise@11#.

The present paper shows a detailed analysis of the in
ence of dynamical noise on switching processes in o
dimensional, discontinuous maps. On the one hand, the
tention is to understand the phenomenon of noise-indu
stabilization in the Lorenz system, which is why differe
aspects of the Lorenz system are discussed in terms of
dimensional maps. On the other hand, different stabiliza
mechanisms are found which are of interest in noi
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controlled switching dynamicsper se.
The dynamics of the Lorenz attractor is characterized

two unstable fixed points in addition to the saddle point
the origin@8,12#. A few specific features that might contrib
ute to noise-induced stabilization characterize the antis
metric Lorenz attractor. These features are increasing
tances of successive states on any Poincare´ section, a
discontinuity with infinite slope that corresponds to the h
moclinic orbit of the origin, and a laminar~intermittentlike!
behavior near the unstable fixed points. The effect of th
properties due to dynamical noise is discussed subsequ
with three different one-dimensional discontinuous maps
an interval: the piecewise linear map@Eq. ~4!#, the Lorenz
map @Eq. ~5!#, and a piecewise linear map exhibiting th
same antisymmetric property as the Lorenz map@Eq. ~6!#. It
turns out that the switching dynamics of all Lorenz-ty
maps under study is significantly reduced by dynami
noise. This reduction is mainly caused by a noise-indu
escape of a typical trajectory into a less frequently visi
part of the attractor.

II. NOISY DISCONTINUOUS MAPS

The influence of dynamical perturbations on a on
dimensional mapF on the intervalI PR is described by a
Langevin-type equation

I→I ,xi°xi 115F~xi !1Dj i , ~1!

wherej i defines some perturbation event with amplitudeD.
To account for the flip-flop process in the Lorenz syste
discontinuous maps are considered. Analogously to
Kramers problem of stochastic motion in a double well p
tential @13#, the average time a trajectory spends on o
branch of the attractor is called themean passage time T.
Throughout this paper the distance of successive st
(xi 112xi) is called state spacing. For all mapsF under
study it is assumed thatF(x)2x5b at the left boundary of
the interval I , which guarantees the same minimum sta
spacingb.

The existence of the stabilization effect in Lorenz’s sy
tem does not depend on the specific type of noise@11#. For
the following analysis it is appropriate to consider random
well as regular dynamical perturbationsDj i in Eq. ~1!.
~Throughout this paper, perturbations are called noise on
they stem from a stochastic process.! As random perturba-
3036 © 1998 The American Physical Society
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PRE 58 3037NOISE-INDUCED STABILIZATION OF ONE- . . .
tions uniform noisejuni f orm anddichotomous Markov noise
jMarkov are considered. Uniform noise is defined as wh
d-correlated noise with zero mean (^j ij i 8&5d i ,i 8), wherej i
is uniformly distributed in the intervalj iP@21,1#. For di-
chotomous Markov noise,j i is uniformly distributed in the
setj iP$21,1%. Both types of noise are~can be! experimen-
tally realized. From an analytical point of view, in contrast
uniform noise, dichotomous Markov noise guarantees a fi
relation of state spacing and perturbationj i at any statexi ,
which simplifies the analysis. Because of that, this pa
deals mainly with dichotomous Markov noise. All realiz
tions of noise sequences consist of subsequences with e
sign. The lengthl of such a subsequence$j i% i 5k

k1 l 21 with
perturbations of equal sign is defined as thelength of con-
stant perturbations~LCP!. In addition to random perturba
tions, regular perturbationsj` of period`, `52l , are con-
sidered. A sequence of regular perturbations of period`
52 is $j i% i 5k

k155121212. The following analysis deals
mainly with global dynamical noise, which means that t
state of a dynamical system is homogeneously, e.g., in e
iteration step, perturbed by a stochastic process. Additio
stabilization can be achieved if a dynamical perturbation a
only locally in state spaceI , which can appear as more rea
istic in certain cases. This is discussed briefly below. T
distinction between different dynamical perturbatio
(juni f orm, jMarkov, j`, global, and local! is mainly made to
probe specific stabilization mechanisms. However, as a c
sequence of these investigations, dynamical perturbation
biased noise can be designed in order to enlarge or re
the stabilization properties.

A further important point is the appropriate choice of t
boundary correction inI as a consequence that a dynami
perturbation can throw the trajectory out of this interval.
obtain a perturbed map on the intervalI , the perturbationj i
is set to zero whenever it would lead to a state that is no
I . Of course, this correction changes the statistics of no
but it guarantees that the correction does not support an
largement of the mean passage time and therefore no
existence of a stabilization phenomenon, which is consis
with the goal of this paper.~Usually, boundary correction
are chosen such that the next random noise event in the n
sequence is used for which the trajectory remains inI . In the
case of dichotomous Markov noise this would mean to
placej i by 2j i at the boundary. This is a larger correction
comparison to the replacementj i50.) Nevertheless, the ef
fect of this boundary correction can be estimated~Sec.
IV A !.

To compare perturbed and unperturbed states of a
namical system on average fort51 andt52 time steps, the
following quantities are defined:F05F(xi), F65F(xi)
6D, F005F(F0), and F675F(F6)7D. In the trivial
case, e.g., fort51 time steps, the noisy system behaves l
the noiseless one becauseHt51:5(F11F2)/22F050 for
any mapF. However, fort52 time steps, where the additiv
noise term interacts with the dynamical systemF, the noisy
dynamics is somehow faster than~equal to! the noise-free
dynamics for concave~linear! maps. In this case, the corre
sponding quantity

Ht52:5~F121F21!/22F00 ~2!
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vanishes for linear~continuous! maps and is positive for
strong concave~continuous! maps if the intervalI is large
enough such that the dynamics is not influenced by bound
corrections or discontinuities. This seems to be in contrad
tion to a stabilization property and directs focus on the int
action of perturbations with discontinuities. Notice that t
above arguments still hold if12 and 21 in Eq. ~2! are
replaced by11 and22.

Symbolic dynamics and entropy

The switching dynamics~flip-flop process! of a discon-
tinuous map under study is described as a symbolic dyna
cal system. Thereby the state spaceI is partitioned with re-
spect to the discontinuity atx5d into two cells, which are
represented by the symbols 0 and 1. Then a typical trajec
$xi% i 50

` can be mapped to a symbol sequenceS5$si% i 50
` ,

such that a symbol 0 (1) is assigned tosi if a statexi is on
the left ~right! side of the discontinuity (si50 for xi,d and
si51 for xi.d). The corresponding symbolic dynamic
system@14# is defined asSF→SF , andS°ŝF(S)5S8 such
that any symbol in the sequenceS fulfills si 115si8

5ŝF(si). SF is the space of all admissible symbol s
quences, e.g., sequences that are induced by the dyna
system for all initial statesx0 on the attractor. The operato
ŝF is calledshift operator onSF and describes the dynamic
generated byF in the space of symbol sequencesSF . For
practical purposes the lengthL of a symbol sequence, de
fined by S5$si% i 50

L21 , is regarded as finite. A wordAj ,n of
length n, Aj ,nP$sksk11•••sk1n21uk50,1, . . . ,L2n%, rep-
resents the set of sequences~trajectories! that coincide in the
first n successive symbols. The set of admissible wordsPn ,
Pn5$Aj ,n% j 51

N , consists of all words of lengthn that appear
in the sequenceS; it is called n-cylinder-induced partition
Pn .

In this paper the complexity of the symbol sequences o
finite time scalen is quantified by the~block! entropyK(n)
@15#:

K~n!5

2(
j 51

N

pj logpj

n
, ~3!

wherepj is the probability that a given wordAj ,n of lengthn
appears in the symbol sequenceS and log represents th
binary logarithm.

In the following analysis, binary sequences of lengthL
5106 and words of lengthn54 are considered.n54 is of
the order of the typical time scaleT(D50) of the switching
processes.

III. OBVIOUS EFFECT:
STABILIZATION BY LOCAL NOISE

The piecewise linear map

The piecewise linear map@Eq. ~4!# is characterized by a
linear increase of the state spacing and a discontinuity w
fixed threshold atx5d:

F: @0,1#→@0,1#,xi°xi 115~axi1b!mod1. ~4!
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3038 PRE 58RENATE WACKERBAUER
With the chosen parameters ofa51.05 andb50.05 the
minimum state spacing isF(0)50.05.

Figure 1 shows the influence of dynamical perturbatio
on the switching behavior: The mean passage timeT ~mean
number of states on@0,d#) decreases with noise levelD for
all considered perturbations and reflects that noise-indu
stabilization does not exist for this linear discontinuous m
T is larger for uniform noise than for dichotomous Marko
noise becausêuj i

uni f ormu&5^uj i
Markovu&/2, whereas the be

havior of dichotomous Markov noisejMarkov and regular
dynamical perturbationj`52 is very similar. As already
pointed out, the linearity ofF far from the discontinuity
leads toHt5250 @Eq. ~2!# and therefore does not explain th
decrease ofT. However, a discussion ofHt52 near the dis-
continuity @16# shows that the discontinuity atx5d leads to
a decrease ofT as soon asD.12d on the unit intervalI ,
where 12d is the maximum state spacing ofF on I . For the
considered parametersa51.05 andb50.05 the discontinuity
appears atd50.905 and the decrease ofT is expected for
D.0.095. This is in good agreement with Fig. 1 becausT
shows a more steep decline with increasingD in the neigh-
borhood of this critical noise levelDc50.095. The small
decrease ofT with D, already for 0.05,D,Dc , reflects the
influence of the boundary correction atx50, where the state
spacing takes its minimum value of 0.05.

In contrast to global dynamical noise, local dynamic
noise can lead to a considerable switching inertia~enlarge-
ment ofT) even for linear maps. This is demonstrated in F
2, where the dependence of the mean passage timeT on the
noise levelD is plotted fora51.05 and different minimum
state spacingsb50.01 (0.001). In the case where noise
added in each iteration step, one gets a reduction of swi
ing with increasingD as discussed above. In contrast,
noise is added locally, for example, on the subinter
@0.2,0.8#, the mean passage timeT is clearly increasing with
D. This is caused by the asymmetry of the state spacing
the left and right boundaries of this subinterval together w
the fact that noise can throw a trajectory out of the subin
val, but not back into it. Assuming a negative noise even
the left boundaryx50.2, the corresponding trajectory pe
forms a loop in such a way thatxi50.22D and xi 1 i m
>0.2, wherei m is the minimum number of iterations fulfill
ing this condition. For a statexi50.8, a positive noise even
lets the trajectory jump toxi850.81D by jumping over the

FIG. 1. Mean passage timeT for the piecewise linear map@Eq.
~4!, with a51.05 andb50.05# versus the noise levelD: uniform
noise(*), dichotomous Markov noise (L), and regular perturba
tions with period`52 (n).
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, where i p is the minimum number of iteration

fulfilling xi 1 i p
<0.81D. Thus, as a rough approximation,

trajectory gainsi m , i m. i p , discrete states and losesi p states
per passage, wherebyHt5250 within the interval. This rea-
son for stabilization is confirmed in Fig. 2 by comparing t
graph ofT(D50)1 i m2 i p with the graph for local noise.

Thus local noise in state space can clearly support
stabilization effect if the state spacing is not constant, eve
cases where there is no stabilization for global noise. O
consequence, from an analytical point of view, is that a
stabilizing effect of dynamical noise on specific local fe
tures of maps cannot be investigated by considering lo
noise since local noise superimposes an additional stabi
tion mechanism on the noisy switching dynamics. This
why a discussion of local noise, in order to understand no
induced stabilization in the Lorenz map, is avoided with
this paper. Furthermore, this type of noise can be regarde
realistic or interesting to consider also from an experimen
point of view, when different subprocesses of a dynami
system are perturbed by noise with different strength.

IV. FORMATION OF NOISE-INDUCED
UNSTABLE FIXED POINTS

A. The Lorenz map

Studying geometric models of the Lorenz flow by on
dimensional maps of an interval onto itself has led to a
markable understanding of the Lorenz system, for exam
the bifurcation behavior at homoclinic explosions, at pret
bulence, or at the Hopf bifurcation@12,17#. The interaction
of dynamical perturbations with the deterministic dynam
of the Lorenz attractor (s510, b5 8

3 , and r 528) is dis-
cussed by means of the corresponding Lorenz map~Fig. 3!
@12,17#

F:@21,1#→@21,1#,

xi°xi 115H 12buxi ua, xiP@21,0!

0, xi50

211buxi ua, xiP~0,1#

~5!

and the corresponding standard parametersa51/b10.001
and b51.95. The minimum state spacing atuxu51 is 1
2F(1)50.05.

FIG. 2. Mean passage timeT versus noise levelD for the piece-
wise linear map (a51.05,b50.01, andb50.001): local noise on
@0.2,0.8# ~dot-dashed line!, the corresponding approximation b
T(D50)1 i m2 i p ~see the text, dashed line!, and global noise~full
line!. The dotted lines correspond to the noise-free mean pas
time T(D50)534.4 for b50.01 and T(D50)579.3 for b
50.001.
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PRE 58 3039NOISE-INDUCED STABILIZATION OF ONE- . . .
The analysis of the noisy Lorenz map and Lorenz-ty
maps focuses on the block entropy, which appears as a m
promising quantity than the mean passage timeT alone, for
the understanding of the stabilization mechanisms. As s
in Fig. 4~a!, the entropyK decreases with increasing nois
level D for random dynamical perturbations~uniform noise
and dichotomous Markov noise!, reflecting a more inhomo
geneous distribution of words in the corresponding sym
sequences in the perturbed case. A more detailed inves
tion of the distribution of words shows that the probability
finding a constant word in the symbol sequence
p(800008)1p(811118)50.29 (0.35) for dichotomous Mar
kov noise with amplitudeD50.1 (0.2), in comparison to the
noise-free case, wherep(800008)1p(811118)50.23. This
reflects that constant words are more frequent in the n
symbol sequence and that a noisy trajectory stays longe
the same branch of the attractor. This effect is called no
induced stabilization@10# and is also expressed in an in
crease of the mean passage timeT of 8% (20%) for D
50.1 (0.2) in Fig. 4~b!. In contrast to that, for regular dy

FIG. 3. Lorenz map~full line!, a linear approximation~dotted
line!, and the noisy Lorenz map (D50.2, dashed line!.

FIG. 4. ~a! EntropyK(n54) and~b! mean passage timeT ver-
sus noise levelD for the Lorenz map: uniform noise(*), dichoto-
mous Markov noise (L), and regular perturbations with period̀
52 (n).
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namical perturbationsj`52, no stabilization is present. Th
dynamics is characterized by a small increase in the entr
K and a decrease in the mean passage timeT with noise level
D, although the dynamical states are perturbed by the s
amplitude of ‘‘noise’’ D. For large noise amplitudes, nea
D.0.4, the random process dominates the switching dyn
ics and, correspondingly, the frequency of constant wo
starts shrinking, which is reflected in Figs. 4~a! and 4~b!.

One important difference between dichotomous Mark
noise and regular perturbations is the maximum LCPl max.
For the considered regular perturbation it isl max5`/251,
whereas for the considered realization of dichotomous M
kov noise it is l max515. The average LCP forjMarkov is
^ l &52.0, in comparison to the mean passage timeT(D50)
52.4. A more detailed analysis@16# shows that the noise
induced entropy reduction, e.g., the stabilization prope
decreases if the maximum LCP is successively reduce
the noise sequencel max515,10,8, . . . ,1.This is represented
in Fig. 5 for a specific noise amplitudeD50.2.

The noise-induced switching inertia is also reflected in
probability distribution of the states of a typical trajecto
that is plotted in Fig. 6~a! for the noise-free case as well a
for dichotomous Markov noise and regular perturbatio
j`52 with noise amplitudeD50.2. A noiseless trajectory
(D50) is more frequently near the discontinuityxi50 than
nearxi51. This remains true for the regular dynamical pe
turbation`52. However, for dichotomous Markov noise th
probability of a trajectory nearxi50 is reduced, whereas th
probability of statesxi.0.6 is clearly increased. Both fea
tures express the stabilization property that might be cau
by two different effects, discussed below.@Because of the
antisymmetryF(2x)52F(x) of the map, only switching
from the left to the right branch is discussed throughout t
paper, without losing universality.#

In the first mechanism noise changes the distribution
switching states. Thereby, a statexi is called switching state
if it switches in the next time stepi 11 from the left to the
right branch. It is defined byxi 21,0 andxi.0. From the
dynamical behavior of the Lorenz map in Fig. 3 it follow
that if an orbit comes close to the discontinuity forxi,0, the
following state~switching state! is close to the end pointxi
51 and the number of iterations on the right branch is ma
mal. Thus, if noise changes the distribution of switchi
states such that states close toxi51 are more frequent, the

FIG. 5. EntropyK(n54) versus maximum length of constan
perturbationsl max for dynamical perturbations with amplitudeD
50.2: dichotomous Markov noise~full line! and regular perturba-
tions `52l max ~dashed line!. The dotted line corresponds toD
50.
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3040 PRE 58RENATE WACKERBAUER
mean passage time might be increased. In Fig. 6~b! the dis-
tributions of switching states for the noise-free orbit and
perturbed orbits ~regular and random perturbations,D
50.2) are compared with each other. All graphs coinc
approximately, except forxi.0.8, where an increased prob
ability in both perturbed cases shows that a dynamical p
turbation can throw the trajectory out from the intervalI . A
combination of the two facts that~i! the probability of
switching states withxi.0.6 is the same for both perturbe
cases@Fig. 6~b!# and~ii ! the stabilization effect vanishes fo
regular dynamical perturbations, indicates that this first ar
ment is not the dominating one for explaining noise-induc
stabilization in the Lorenz map.

In the second mechanism noise induces an unstable fi
point. As a consequence of the noise-induced unstable fi
point x̃ of F1D, which exists in I for noise levels
D.0.05 ~Fig. 3!, the existence of an attractive regionA
5@ x̃,1#,I of the mapF1D is generated. Here, the LCP
explicitely taken into account, since forx1,xi,02, where
F(x1)1D5 x̃, a noise subsequence$j i%511(1•••) di-
rects the orbit into the attractive regionA. There the direc-
tion of iteration is reversed for positive noise eventsj i.0 in
comparison to the noise-free case, which is a necessary
dition for the escape of a trajectory. Notice the similarity
the noisy mapF6D to the Lorenz map in the paramet
regime near and at the existence of preturbulence@18,12#.

Since mainly subsequences with constant perturbat
are responsible for the stabilization phenomenon, one
pects that driving forces with an increased frequency of s
subsequences might further enlarge the stabilization. Th
the case for colored noise, but especially for periodic per
bations. For this last case, the decrease of entropy with

FIG. 6. Probability distribution of~a! all states and~b! the
switching states:D50 ~full line!, dichotomous Markov noise (D
50.2, dotted line!, and regular perturbationsj`52 (D50.2, dashed
line!.
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maximum LCP,l max5`/2, is plotted in Fig. 5 forD50.2.
Stabilization is present as soon as`/2 is of the order of the
typical time scaleT(D50) of the switching process. In com
parison to dichotomous Markov noise the stabilization eff
is more marked forl max.6 in the case of regular perturba
tion because perturbations withl .6 are more frequent in
periodic sequences than in realizations of random noise.

The effect of the boundary correction on the mean p
sage timeT can be estimated by comparing the values ofT,
calculated with and without boundary correction. For d
chotomous Markov noise and no boundary correction n
the noise-induced fixed points,T increases continuously with
the noise amplitudeD. Without ~with! boundary correction
one finds an increase ofT540% (20%) forD50.2 andT
5110% (20%) forD50.4 in comparison to the noise-fre
case. For regular perturbations (`52), T remains constan
without boundary correction, independent of the noise le
D.

This identified stabilization mechanism in the discre
time system can be transferred directly to the continuo
time Lorenz system, where stabilization was reported ear
@10,11#. There the first component of the Lorenz system w
perturbed by different types of noise, steadily after so
stroboscopic time. Although the comparison can be o
qualitatively, it is obvious that also in the continuous ca
noise can induce or better shift the two symmetric unsta
fixed points such that a typical trajectory is able to com
closer to~escape into the direction of! the noise-free unstable
fixed points. The decrease in the entropy value is about
same for the time-continuous and the time-discrete syste

B. The piecewise linear Lorenz map

A linear approximation of the Lorenz map in Eq.~5! by
two linear functions per branch is defined as piecewise lin
Lorenz map

F: @21,1#→@21,1#,

xi°xi 115H f 1~xi !, xiP@21,0!

0, xi50

f 2~xi !52 f 1~2xi !, xiP~0,1#,

~6!

with f 1(02)51 and f 1(xi)5axi1b for 21<xi,k,0 and
a.1. The parameterb is fixed asb5a20.95 in order to
have the same minimum state spacing as in the Lorenz
f 1(21)1150.05. This map can be regarded as a gener
zation of the Lorenz map, since it exhibits the same symm
try, but allows us to vary the length of the laminar phase (k)
and the corresponding slopea. A further advantage is tha
critical noise levels for different stabilization mechanism
can be derived analytically. Although this map exhibits
rich variety of dynamical behavior for different paramete
it is discussed in close connection to the Lorenz map in
following. In particular, the linear approximation of the Lo
renz map in Fig. 3, consisting of two kinks~at k1520.2,
k2520.03), is discussed in detail by the piecewise line
Lorenz map@Eq. ~6!# with only one kink per branch~located
at k). This allows us to focus on the influence of dynamic
noise on both kinks separately and therefore to simulate
ferent aspects of the Lorenz map separately.~Because of the
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PRE 58 3041NOISE-INDUCED STABILIZATION OF ONE- . . .
antisymmetric property of this map, again, only switchi
from the left to the right branch is discussed, without losi
universality.!

1. Approximation in the neighborhood
of the discontinuity:k5k2

To study the effect of dynamical noise in the Lorenz m
near the discontinuity, where the slope tends to infinity,
parameters in Eq.~6! are chosen ask5k2520.03 anda
51.56, such that the piecewise linear Lorenz map coinci
with the approximation of the Lorenz map in Fig. 3 foruxi u
,uku. In Fig. 7 noise-induced stabilization is quantified
~a! the entropyK(n54) and~b! the mean passage timeT:
The entropy increases withD for D,0.26, whereas for
larger noise levels, the entropy decreases@Fig. 7~a!#. The
mean passage timeT increases with the noise levelD near
D,0.16 for both dichotomous Markov noise and regu
perturbations (̀ 52). For larger amplitudesD both graphs
split, indicating a change in the underlying mechanism
noise-induced switching inertia:T still increases for dichoto-
mous Markov noise, whereasT remains constant for regula
perturbations. Similarly to the Lorenz map, two stabilizati
mechanisms can be identified, which are discussed belo

The first mechanism is a redistribution of switching stat
In the noise-free case the distribution of switching state
characterized by a step atxi5 f 1(k), wheref 1(k)50.56 for
the considered parameters~Fig. 8!. This step is caused by
comparatively large slope of the map foruxi u,k, and this is
why the support of the attractor can be divided in one sub
I 15@2D2 f 1(k), f 1(k)1D#, which is visited often by the
trajectory, and the complementary subsetI 25I 2I 1 , which
is less frequently visited. For the noise-free case andxi
PI 1 , only passages of one or two iterations p

FIG. 7. ~a! EntropyK(n54) and~b! mean passage timeT ver-
sus noise levelD for the piecewise linear Lorenz map (k
520.03): dichotomous Markov noise (L) and regular perturba
tions with period`52 (n).
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branch are possible@16#. This is reflected in the probability
distribution of words of lengthn54 such that it is dominated
by words ‘‘0101’’ and ‘‘0110’’ and the corresponding sym
metric ones. Correspondingly, the mean passage tim
small,T(D50)51.5, as is the entropy value.

Dynamical perturbations lead to a redistribution

switching states in the intervalĨ 15@ f 1(k)2D, f 1(k)1D#
PI 1 , whereas forxi. f 1(k)1D the graphs nearly coincide
for both noisy and the noise-free cases~Fig. 8!. This redis-
tribution of switching states allows more iterations per p

sage with increasing noise levelD for somexiP Ĩ 1 since the

upper boundary ofĨ 1 increases. A more detailed discussio
in @16# shows that this gain of states dominates the loss
states that is caused by a decrease of the lower bounda

Ĩ 1 . For D.0, the corresponding probability distribution o
words is characterized by an increase of words of type 0
and 0111, respectively, and, in parallel, a reduction of
most frequent words 0101. Thus the entropy as well aT
increases slowly forD.0 ~Fig. 7!.

The second mechanism is the existence of a noise-indu
unstable fixed point. For noise levels larger than the m
mum state spacing,D.0.05, the existence of an unstab
fixed point x̃, x̃5(b2D)/(a21), of the mapf 21D on I

yields the existence of an attractive regionA5@ x̃,1#,I .
Thus, as soon as a trajectory visitsA, positive perturbations
can direct the trajectory to the end point. For small no
amplitudesD, the probability of a trajectory to visitA, is
small sinceI 1ùA5$ %. However, as soon as a critical nois
level f 1(k)1D. x̃ is reached, e.g.,D.DA and DA50.19
for the condsidered parameters, this probability is clearly
creased becauseI 1ùAÞ$ %. Then a trajectory can escap
into I 2 , the less frequently visited subset of the attract
already for frequent switching statesxiPI 1 , becauseI 2,A.
~In principle, this mechanism is the same as for the Lore
system, except that the arguments are more quantitative
critical parameters can be calculated analytically.!

The effect of the second stabilization mechanism is de
onstrated in the distribution of words (n54) in Fig. 9. For
D50.16, which is below the critical noise levelDA50.19,
the distribution is dominated by words of type 0101 and o
minor part by words of type 0110. NearD50.22'DA , a
transition to a rather homogeneous distribution takes pla
the corresponding entropy takes its maximum value of ab

FIG. 8. Probability distribution of the switching states forD
50 ~full line!, dichotomous Markov noise (D50.2, dotted line!,
and regular perturbationsj`52 (D50.2, dashed line!.
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FIG. 9. Probability distribution of words of lengthn54 ~a! below (D50.16), ~b! near (D50.22), and~c! above (D50.28) the critical
noise levelDA50.19. The words are represented by their normalized binary number representation.
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K(n54)51 and remains constant. Above the critical no
level D.DA (D50.26), constant words are dominant
the distribution of words, yielding again a structured dist
bution and therefore a decrease in the entropy.

Again, as a consequence of the second stabiliza
mechanism, regular perturbations with period`52l and l
51,2,4,6,8,10 enlarge the mean passage time by 10%, 1
60%, 83%, 123%, and 157%, in comparison to dichotom
Markov noise, where the corresponding factor is 47%
D50.3. It is further remarkable that both stabilizatio
mechanisms are visible in the entropy graph@Fig. 7~a!#, but
they become obvious in theT graph only if different types of
perturbations are considered@Fig. 7~b!#.

2. Approximation in the neighborhood
of the laminar phase:k5k1

The approximation of the Lorenz map near the lamin
phase is studied in two cases:~i! k520.2, for which stabi-
lization is clearly marked, and~ii ! k520.5, which is more
relevant for the Lorenz map~Fig. 3!. In both cases (a
51.05), the piecewise linear Lorenz map coincides with
approximation of the Lorenz map in Fig. 3 foruxi u.uku. In
contrast to the preceding subsection, both kinks are loc
at k, f 1

21(02). Thus their influence on the trajectory is ea
lier than the time step immediately before switching. Th
results in an amplification of the noise level that is super
posed on the two stabilization mechanisms and is discu
below.

For the kink atk520.2, the piecewise linear mapf 1 is
given by f 1(xi)51.05xi10.1 for xi<k and f 1(xi)55.55xi
11 for xi>k. The entropyK(n54) decreases with the
noise levelD ~Fig. 10! and reflects the existence of a nois
driven stabilization. In contrast to the previous case, the

FIG. 10. EntropyK(n54) versus noise levelD for the piece-
wise linear Lorenz map (k520.2): dichotomous Markov noise
(L) and regular perturbations with period̀52 (n).
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bilization effect appears for smaller noise levels and
present even for regular perturbations (`52). For D50.1,
the mean passage timeT is enlarged by 23% for regula
perturbations (̀ 52), in comparison to 45% for dichoto
mous Markov noise.

The first mechanism is a redistribution of switching stat
For the noise-free case, the distribution of switching state
Fig. 11 is characterized by a step atxi5 f 1

2(k)50.39. The
less frequently visited subset of the attractorI 25@ f 1

2(k),1# is
determined by the second iterate off 1 since a trajectory with
xi5k stays on the left branch for two more time steps b
causek, f 1

21(02) and f 1
2(k).0. As a consequence, the co

responding redistribution of switching states onĨ 1 for D
.0 ~Fig. 11! is governed by an effective noise level, whic
is larger than the true noise level. For dichotomous Mark
noise the interval is given byĨ 1

Markov5@ f 1„f 1(k)2D…

2D, f 1„f 1(k)1D…1D#, which can be rewritten asĨ 1
Markov

5@ f 1
2(k)2De f f

Markov , f 1
2(k)1De f f

Markov# and an effective noise
level De f f

Markov . For the piecewise linear Lorenz map, th
effective value is given byDe f f

Markov5(m11)D, wherem is
the slope off 1 for xi.k, e.g.,De f f

Markov56.5D for the con-
sidered parameters. This amplified noise level fits well w
the distribution of switching states in Fig. 11. For regu
perturbations (̀ 52), the corresponding intervalĨ 1

`52 is

slightly smaller because Ĩ 1
`525@ f 1„f 1(k)2D…

1D, f 1„f 1(k)1D…2D#. This corresponds to an effectiv
noise level ofDe f f

`525(m21)D, yielding De f f
`5254.5D for

the considered parameters. In both cases, dynamical pe
bations are amplified by the interaction with the dynami
system and therefore stabilization is present even for reg
perturbations.

The second mechanism is the existence of a noise-indu
unstable fixed point. This mechanism leads to additional
bilization for dichotomous Markov noise as well as for reg
lar perturbations with periods̀ .2T(D50), whereby the
time scale of the noise-free system isT(D50)54.3. How-
ever, the critical noise levelDA50.06 is considerably smal
than Sec. IV B 1, reflecting the strong amplification of nois

The shape of the graphs in Fig. 10 are determined by
additional effects@16#. First, nearD.0.1, the entropy starts
growing with noise levelD for jMarkov as well as forj`52:
This is caused by the fact that statesxi,k exist such that the
first iterate is a switching statef 1(xi)1D.0. This happens
as soon asf 1(k)1D.0, e.g.,D.0.11. The second remar
concerns the decrease of the entropy with noise levelD for
D.0.35, only for regular perturbationsj`52. This is caused
by a rapid increase of words 0101 and reflects that the
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jectory can be captured near the discontinuity for this p
ticular type of regular perturbation, not discussed in m
detail.

For the kink atk520.5, for the piecewise linear Loren
map with k520.5, the corresponding step in the distrib
tion of switching states forD50 is less marked in compari
son tok520.2 because the slope forxi.k is reduced,m
52.85,5.5. Thus the redistribution of switching states
dynamical noise with respect to the noise-free case is sm
for k520.5. As a consequence, the stabilization propert
nearly vanishing for regular perturbation as seen in Fig.
The maximum stabilization is 8% forD50.06 and regular
perturbationsj`52 and 21% forD50.1 and dichotomous
Markov noise.

Otherwise, fork520.5, noise is amplified by two dy
namical interactions becausef 1

2(k)520.21 and f 1
3(k)

50.40. The corresponding amplification of, for examp
positive noise events, is given by (11m1m2)D, e.g., 12D
for m52.85, and is about two times larger than for the ca
k520.2. This strong amplification of noise causes a m
steep increase ofT nearD50 for k520.5 ~Fig. 12! than it
is the case fork520.2. Furthermore, it yields also a sma
critical noise levelDA50.05 for the onset of the secon
stabilization mechanism that dominates the degree of st
lization.

The specific choice of the kink atk521 corresponds to
a single piecewise approximation of the Lorenz map onI .
Although noise-induced stabilization still exists in this ca
it becomes significantly visible in the corresponding grap
(K, T) only, after some proper techniques are applied.

3. Comparison with the Lorenz map

For the piecewise linear Lorenz map, in both cases (k5
20.03 andk520.5) two mechanisms for noise-driven st
bilization are found:~i! noise-induced redistribution of th
switching states, corresponding to an enlargement of the
quently visited part of the attractor, and~ii ! noise-induced
unstable fixed point, corresponding to a possible escape
trajectory to the endpointsuxi u51. In addition, for k5
20.5, an amplification of noise (De f f.D) is superimposed
on these two processes, which leads to a shift of the sta
zation phenomenon to smaller noise levels as demonstr
in Fig. 12 fork520.03 andk520.5.

Additionally, Fig. 12 represents the stabilization effect f
the Lorenz map and for its two-kink approximation~Fig. 3!.

FIG. 11. Probability distribution of the switching states forD
50 ~full line! for dichotomous Markov noise (D50.05, dotted
line! and regular perturbationsj`52 (D50.05, dashed line!.
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This approximation is defined byf 1(xi)51.05xi10.1 for xi
,20.5, f 1(xi)52.1xi10.625 for 20.5<xi,20.03, and
f 1(02)51 on the left branch ofI and reproduces noise
induced stabilization in the Lorenz map~Fig. 12!. The de-
pendence of the mean passage timeT on the noise levelD
for the Lorenz map and its two-kink approximation is simil
to the behavior of the piecewise linear Lorenz map
k520.03, but shifted to smaller noise levels. This shift r
sults from a smaller critical noise levelDA50.09,0.19, cal-
culated analytically for the two-kink approximation from
f 1(20.03)1DA5 x̃. This critical value DA50.09 deter-
mines exactly the noise level where stabilization becom
obvious for the Lorenz map, as seen in Fig. 12, support
the hypothesis that the second mechanism is the domi
one.

The time scale of the flip-flop processes is different
both maps:T(D50)52.4 for the Lorenz map and its two
kink approximation andT(D50)51.5 for the piecewise lin-
ear Lorenz map (k520.03). For the Lorenz map, consta
words of lengthn54 are already dominant forD50, in
contrast to the piecewise linear Lorenz map, where switch
0101 dominates. IncreasingD in the first case increases th
frequency of constant words for smallD. Thus entropy does
not increase withD (D small! for the Lorenz map in Fig. 4,
in contrast to the piecewise linear Lorenz map in Fig. 7.

V. CONCLUSIONS

To understand noise-induced stabilization~NIS! in the
Lorenz system@10#, the influence of dynamical perturbation
~uniform white noise, dichotomous Markov noise, and reg
lar perturbations! on the switching dynamics of one
dimensional discontinuous maps is discussed. For the pi
wise linear system~modulo discontinuity! a stabilization
~enhancement of the mean passage time! is present if noise is
added locally in state space, which is in contrast to glo
noise, where no stabilization is found. For the Lorenz map
well as for piecewise linear approximations, exhibiting t
same antisymmetric property as the Lorenz map, stabil
tion is present even for global noise, as it is the case in
three-dimensional Lorenz flow. A detailed analysis sho
that this stabilization is mostly caused by the existence o

FIG. 12. Comparison of the mean passage timeT versus noise
level D ~dichotomous Markov noise! for different approximations
of the Lorenz map: , Lorenz map;•••2, linear approximation
with two kinks (k1520.5,k2520.03), and piecewise linear Lo
renz map fork520.5 ~—! andk520.03 (•2•2). The vertical
ticks mark the corresponding critical noise levelsDA and the dotted
line marksT(D50) for the Lorenz map.
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noise-induced unstable fixed point, yielding a noise-indu
attractive region of the state space and resulting in an in
mittent escape of the trajectory into a less frequently visi
subset of the attractor. This stabilization can be clearly
hanced if regular~colored! perturbations with periods longe
than two times the typical time scale of the noiseless sys
are considered.

The identified stabilization mechanisms with respect
one-dimensional maps can be transfered directly to the th
dimensional Lorenz flow to related switching processes
other continuous dynamical systems, but of course also
other one-dimensional discontinuous maps. For exam
consider Lorenz-type maps with smoothed kinks or cor
sponding maps with modulo discontinuity. However, a ge
eralization of the phenomenon of NIS to one-dimensio
discontinuous maps is not possible since in particular ca
either stabilizing or destabilizing@16# factors can dominate
the perturbed switching dynamics.

From a methodical point of view, it is demonstrated by
comparative analysis of the mean passage time and the b
entropy, based on a symbolic dynamical description of
switching process, that additional information can be
tracted from the output signal by means of the entropy. T
supports that symbolic dynamics is a promising concept
the analysis of switching dynamics, as already pointed ou
n,
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Witt, Neimann, and Kurths@19# and others in the context o
stochastic resonance.

The most prominent effect with respect to noise-driv
switching processes is stochastic resonance~SR! @4#. Al-
though its notion has a very broad meaning in the literatu
it is claimed that NIS under study is not a SR phenomen
either in the conventional meaning of signal amplification@4#
or in generalized versions such as aperiodic stochastic r
nance@20# or noise-free SR@21,22#, since all these realiza
tions of SR show a minimum in the mean passage time
certain noise level. However, several properties found in
noisy Lorenz system~map! are related to findings in the tran
sient dynamics of an overdamped particle in a noisy cu
potential@23# or in a noisy bistable system operating in th
strong forcing regime@24,25#. These properties are pos
poned switch events or enhancement of stabilization by
ored noise. This motivates a detailed comparative analysi
both types of noisy switching processes.
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